写作之家!您身边的写作助手!请记住我们域名:4218.cn

人教版数学五年上册知识点

范文百科 分享 时间: 加入收藏 我要投稿 点赞

数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题下面是小编整理的人教版数学五年上册知识点,仅供参考希望能够帮助到大家。

人教版数学五年上册知识点

小数乘法

1、小数乘整数(P2、3):意义--求几个相同加数的和的简便运算。

如:1.5×3表示1.5的3倍是多少或3个1.5的和的简便运算。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数(P4、5):意义--就是求这个数的几分之几是多少。

如:1.5×0.8就是求1.5的十分之八是多少。

1.5×1.8就是求1.5的1.8倍是多少。

计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数一共有几位小数,就从积的右边起数出几位点上小数点。

注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。

3、规律(1)(P9):一个数(0除外)乘大于1的数,积比原来的数大;

一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:(P10)

⑴四舍五入法;⑵进一法;⑶去尾法

5、计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。

6、(P11)小数四则运算顺序跟整数是一样的。

7、运算定律和性质:

加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)

减法:减法性质:a-b-c=a-(b+c)a-(b-c)=a-b+c

乘法:乘法交换律:a×b=b×a

乘法结合律:(a×b)×c=a×(b×c)

乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】

除法:除法性质:a÷b÷c=a÷(b×c)

针对练习:

1、列竖式计算。

27×0.430.86×1.21.2×1.4

(计算并验算)(得数保留两位小数)(精确到十分位)

2、计算下面各题,能简便运算的要简便运算。

7.06×2.4-5.72.33×0.5×40.65×105

3.76×0.25+25.84.8×0.251.2×2.5+0.8×2.5

小数除法

1、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。

如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算。

2、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。

3、(P21)除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按"除数是整数的小数除法"的法则进行计算。

注意:如果被除数的位数不够,在被除数的末尾用0补足。

4、(P23)在实际应用中,小数除法所得的商也可以根据需要用"四舍五入"法保留一定的小数位数求出商的近似数。

5、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。②除数不变,被除数扩大,商随着扩大。被除数不变,除数缩小,商扩大。③被除数不变,除数缩小,商扩大。

6、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

循环节:一个循环小数的小数部分,依次不断重复出现的数字。如6.3232…………的循环节是32.

7、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。

观察物体

1、正确辨认从上面、前面、左面观察到物体的形状。

2、观察物体有诀窍,先数看到几个面,再看它的排列法,画图形时要注意,只分上下画数量。

3、从不同位置观察同一个物体,所看到的图形有可能一样,也有可能不一样。

4、从同一个位置观察不同的物体,所看到的图形有可能一样,也有可能不一样。

5、从不同的位置观察,才能更全面地认识一个物体。

简易方程

1、(P45)在含有字母的式子里,字母中间的乘号可以记作"·",也可以省略不写。

加号、减号除号以及数与数之间的乘号不能省略。

2、a×a可以写作a·a或a,a读作a的平方。2a表示a+a

3、方程:含有未知数的等式称为方程。

使方程左右两边相等的未知数的值,叫做方程的解。

求方程的解的过程叫做解方程。

4、解方程原理:天平平衡。

等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。、

5、个数量关系式:加法:和=加数+加数一个加数=和-另一个加数

减法:差=被减数-减数被减数=差+减数减数=被减数-差

乘法:积=因数×因数一个因数=积÷另一个因数

除法:商=被除数÷除数被除数=商×除数除数=被除数÷商

6、所有的方程都是等式,但等式不一定都是方程。

7、方程的检验过程:方程左边=……

8、方程的解是一个数;

解方程式一个计算过程。=方程右边

所以,X=…是方程的解。

针对练习

1.判一判下面的说法是否正确。

(1)方程都是等式,但等式不一定是方程。()

(2)含有未知数的等式叫做方程。()

(3)方程的解和解方程是一样的。()

(4)10=4x-8不是方程。()

(5)x=0是方程5x=5的解。()

(6)9.3-1.3=10-2是等式。()

2.解方程。

x+53=102x-17=54

x-0.9=1.2x+310=690

8.5+x=10.2x-0.74=1.5

多边形的面积

1、公式:

长方形:周长=(长+宽)×2--【长=周长÷2-宽;宽=周长÷2-长】字母公式:C=(a+b)×2

面积=面积=长×宽字母公式:S=ab

正方形:周长=边长×4字母公式:C=4a

平行四边形的面积=底×高字母公式:S=ah

三角形的面积=底×高÷2--【底=面积×2÷高;高=面积×2÷底】字母公式:S=ah÷2

梯形的面积=(上底+下底)×高÷2字母公式:S=(a+b)h÷2

【上底=面积×2÷高-下底,下底=面积×2÷高-上底;高=面积×2÷(上底+下底)】

2、平行四边形面积公式推导:剪拼、平移

3、三角形面积公式推导:旋转

平行四边形可以转化成一个长方形;

两个完全一样的三角形可以拼成一个平行四边形,

长方形的长相当于平行四边形的底;

平行四边形的底相当于三角形的底;

长方形的宽相当于平行四边形的高;

平行四边形的高相当于三角形的高;

长方形的面积等于平行四边形的面积,

平行四边形的面积等于三角形面积的2倍,

因为长方形面积=长×宽,所以平行四边形面积=底×高。

因为平行四边形面积=因为平行四边形面积=底×高,所以三角形面积=底×高÷2

4、梯形面积公式推导:旋转

5、三角形、梯形的第二种推导方法老师已讲,自己看书

两个完全一样的梯形可以拼成一个平行四边形,知道就行。

平行四边形的底相当于梯形的上下底之和;

平行四边形的高相当于梯形的高;

平行四边形面积等于梯形面积的2倍,

因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2

6、等底等高的平行四边形面积相等;

等底等高的三角形面积相等;

等底等高的平行四边形面积是三角形面积的2倍。

7、长方形框架拉成平行四边形,周长不变,面积变小。

8、组合图形:转化成已学的简单图形,通过加、减进行计算。

统计与可能性

一、统计图的分类及点

(1)条形统计图:条形统计图是用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直条按照一定的顺序排列起来。

作用:从条形统计图中很容易看出各种数量的多少。

(2)拆线统计图:折线统计图是用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来。

作用:折线统计图不但可以表示出数量的多少,而且能够清楚地表示出数量增减变化的情况。

(3)扇形统计图:扇形统计图是用整个圆表示总数,用圆内各个扇形的大小表示各部分数量占总数的百分数。

作用:通过扇形统计图可以很清楚地表示各部分数量同总数之间的关系。

折线统计图不但能反映数据(量)的多少,更能反映某一项目在某一时间内的数据(量)增减变化情况.

二、平均数、众数、中位数比较

相同点

平均数、中位数和众数这三个统计量的相同之处主要表现在:都是来描述数据集中趋势的统计量;都可用来反映数据的一般水平;都可用来作为一组数据的代表。

不同点

它们之间的区别,主要表现在以下方面。

1、定义不同

平均数:一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。

中位数:将一组数据按大小顺序排列,处在最中间位置的一个数叫做这组数据的中位数。

众数:在一组数据中出现次数最多的数叫做这组数据的众数。

2、求法不同

平均数:用所有数据相加的总和除以数据的个数,需要计算才得求出。

中位数:将数据按照从小到大或从大到小的顺序排列,如果数据个数是奇数,则处于最中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数是这组数据的中位数。它的求出不需或只需简单的计算。

众数:一组数据中出现次数最多的那个数,不必计算就可求出。

3、个数不同

在一组数据中,平均数和中位数都具有惟一性,但众数有时不具有惟一性。在一组数据中,可能不止一个众数,也可能没有众数。

4、呈现不同

平均数:是一个“虚拟”的数,是通过计算得到的,它不是数据中的原始数据。

中位数:是一个不完全“虚拟”的数。当一组数据有奇数个时,它就是该组数据排序后最中间的那个数据,是这组数据中真实存在的一个数据;但在数据个数为偶数的情况下,中位数是最中间两个数据的平均数,它不一定与这组数据中的某个数据相等,此时的中位数就是一个虚拟的数。

众数:是一组数据中的原数据,它是真实存在的。

5、代表不同

平均数:反映了一组数据的平均大小,常用来一代表数据的总体“平均水平”。

中位数:像一条分界线,将数据分成前半部分和后半部分,因此用来代表一组数据的“中等水平”。

众数:反映了出现次数最多的数据,用来代表一组数据的“多数水平”。

这三个统计量虽反映有所不同,但都可表示数据的集中趋势,都可作为数据一般水平的代表

6、特点不同

平均数:与每一个数据都有关,其中任何数据的变动都会相应引起平均数的变动。主要缺点是易受极端值的影响,这里的极端值是指偏大或偏小数,当出现偏大数时,平均数将会被抬高,当出现偏小数时,平均数会降低。

中位数:与数据的排列位置有关,某些数据的变动对它没有影响;它是一组数据中间位置上的代表值,不受数据极端值的影响。

众数:与数据出现的次数有关,着眼于对各数据出现的频率的考察,其大小只与这组数据中的部分数据有关,不受极端值的影响,其缺点是具有不惟一性,一组数据中可能会有一个众数,也可能会有多个或没有。

7、作用不同

平均数:是统计中最常用的数据代表值,比较可靠和稳定,因为它与每一个数据都有关,反映出来的信息最充分。平均数既可以描述一组数据本身的整体平均情况,也可以用来作为不同组数据比较的一个标准。因此,它在生活中应用最广泛,比如我们经常所说的平均成绩、平均身高、平均体重等。

中位数:作为一组数据的代表,可靠性比较差,因为它只利用了部分数据。但当一组数据的个别数据偏大或偏小时,用中位数来描述该组数据的集中趋势就比较合适。

众数:作为一组数据的代表,可靠性也比较差,因为它也只利用了部分数据。。在一组数据中,如果个别数据有很大的变动,且某个数据出现的次数最多,此时用该数据(即众数)表示这组数据的“集中趋势”就比较适合。

平均数、中位数和众数的联系与区别:

平均数应用比较广泛,它作为一组数据的代表,比较稳定、可靠。但平均数与一组数据中的所有数据都有关系,容易受极端数据的影响;简单的说就是表示这组数据的平均数。中位数在一组数据中的数值排序中处于中间的位置,人们由中位数可以对事物的大体进行判断和掌控,它虽然不受极端数据的影响,但可靠性比较差;所以中位数只是表示这组数据的一般情况。众数着眼对一组数据出现的频数的考察,它作为一组数据的代表,它不受极端数据的影响,其大小与一组数据中的部分数据有关,当一组数据中,如果个别数据有很大的变化,且某个数据出现的次数较多,此时用众数表示这组数据的集中趋势,比较合适,体现了整个数据的集中情况。

平均数、中位数和众数它们都有各自的的优缺点:

平均数:(1)需要全组所有数据来计算;

(2)易受数据中极端数值的影响.

中位数:(1)仅需把数据按顺序排列后即可确定;

(2)不易受数据中极端数值的影响.

众数:

(1)通过计数得到;

(2)不易受数据中极端数值的影响

三、可能性大小

可能性的大小与物体的数量多少有关,可能用分数来表示可能性的大小

学习数学4个小方法

.做完题要学会总结。对于做过的题型及做错的题目要善于进行分类总结,再遇到类似的题目要会分析,知道哪里容易出现问题,然后尽量去避免。同时在做题和总结过程中,要学会举一反三,抓住考点去复习。

.数学除了一些学习上的方法和窍门外,答题时也要讲究策略,不会的果断放弃。

.考试时合理分配答题时间,选择题和大题按照规划的时间作答,超出时间还算不出来就做下一道题。

.数学有些名人小故事可以看,很有意思,对数学学习也有一些帮助。

如何对待数学考试

首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。

调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。

在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。

由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。


人教版数学五年上册知识点相关文章:

★ 五年级下册数学期末复习资料大全

★ 人教版小升初数学知识要点整理2021

★ 小学数学教案大全

★ 人教版高一数学知识点最新总结五篇分享

★ 人教版小学数学教案优秀范文模板

★ 人教版小学四年级数学下册电子课本免费下载

★ 人教版高一数学必修一知识点归纳最新五篇

★ 高二数学人教版知识点归纳

★ 人教版高一数学知识点梳理整合5篇

★ 人教版高一数学必背知识点总结最新五篇分享

221381
领取福利

微信扫码领取福利

微信扫码分享