写作之家!您身边的写作助手!请记住我们域名:4218.cn

必修一数学第四章知识点总结

范文百科 分享 时间: 加入收藏 我要投稿 点赞

数学与我们的生活有着密切的联系,让学生认识到现实生活中蕴涵着大量的数学信息,数学在现实生活中有着广泛的应用,并从中体会到数学的价值,增进对数学的理解和应用数学的信心等。下面是小编整理的必修一数学第四章知识点总结,仅供参考希望能够帮助到大家。

必修一数学第四章知识点总结

基本初等函数有哪些

基本初等函数包括以下几种:

(1)常数函数y = c( c 为常数)

(2)幂函数y = x^a( a 为常数)

(3)指数函数y = a^x(a>0, a≠1)

(4)对数函数y =log(a) x(a>0, a≠1,真数x>0)

(5)三角函数以及反三角函数(如正弦函数 :y =sinx 反正弦函数:y = arcsin x等)

基本初等函数性质是什么

幂函数

形如y=x^a的函数,式中a为实常数 。

指数函数

形如y=a^x的函数,式中a为不等于1的正常数。

对数函数

指 数函数的反函数,记作y=loga a x,式中a为不等于1的正常数。指数函数与对数函数之间成 立关系式,loga ax=x。

三角函数

即正弦函数y=sinx ,余弦函数y=cosx ,正切函数y=tanx,余切函数y=cotx ,正割函数y=secx,余割 函数y=cscx(见 三角学)。

反三角函数

三角函数 的反函数 ——反正弦函数y = arc sinx ,反 余 弦函数 y=arc cosx (-1≤x≤1, 初等函数0≤y≤π) ,反 正 切 函数 y=arc tanx , 反余切函数 y = arc cotx(-∞<x<+∞ p="" 以上这些函数常统称为基本初等函数。<="" 。="" 等="" )="" ,θ<y

学习数学小窍门

建立数学纠错本。

把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。

限时训练。

可以找一组题(比如10道选择题),争取限定一个时间完成;也可以找1道大题,限时完成。这主要是创设一种考试情境,检验自己在紧张状态下的思维水平。

调整心态,正确对待考试。

首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。

数学函数的值域与最值知识点

1、函数的值域取决于定义域和对应法则,不论采用何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下:

(1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域.

(2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元.

(3)反函数法:利用函数f(x)与其反函数f-1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得.

(4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法.

(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧.

(6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用“△≥0”求值域.其题型特征是解析式中含有根式或分式.

(7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域.

(8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域.

2、求函数的最值与值域的区别和联系

求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异.

如函数的值域是(0,16],最大值是16,无最小值.再如函数的值域是(-∞,-2]∪[2,+∞),但此函数无最大值和最小值,只有在改变函数定义域后,如x>0时,函数的最小值为2.可见定义域对函数的值域或最值的影响.

3、函数的最值在实际问题中的应用

函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润最大”或“面积(体积)最大(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值.


必修一数学第四章知识点总结相关文章:

★ 高一数学必修五知识点总结归纳

★ 高一年级数学必修五知识点最新归纳2021

★ 高一数学必修一知识点总结归纳五篇精选

★ 最新高一必考数学知识点归纳精选5篇

★ 人教版高一数学必修一重点知识点总结5篇

★ 人教版高一数学必修一必考知识点总结分享五篇

★ 人教版高一数学必修一知识点精选归纳5篇

★ 人教版高一数学必修一知识点归纳最新五篇

★ 高三数学重要知识点总结五篇

★ 高一地理必修二第四章知识点总结归纳

221381
领取福利

微信扫码领取福利

微信扫码分享