写作之家!您身边的写作助手!请记住我们域名:4218.cn

小学数学教案鸡兔同笼

七七范文 分享 时间: 加入收藏 我要投稿 点赞

小学数学教案鸡兔同笼【精选5篇】

教案可以帮助教师有意识地引导学生进行学习,提高课堂效率。可以使教师掌握更全面的教学知识和方法,提高教学的质量和效果。这里给大家分享一些关于小学数学教案鸡兔同笼,供大家参考学习。

小学数学教案鸡兔同笼

小学数学教案鸡兔同笼精选篇1

一、古语鸡兔同笼题,揭示课题。

1、今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?

生模仿古人读题,说说自己的理解。

2、揭示课题

二、自主探索,解决问题

1、简化鸡兔同笼。

笼子里有若干只鸡和兔。从上面数,有8个头,从下面数,有26只脚。鸡和兔各有几只?

2、探究方法

(1)列表法

鸡876543210兔012345678

(2)画图假设

用圆圈来表示鸡兔的头。那么,不管鸡兔具体有几只,我们首先要画几个圆圈?

现在,我想请一位同学来说说看,接下来该怎么办了?

师根据学生的述说添画脚,并适时地提问、板书:

少了几只脚?

2只2只地添,得添几个这样的2只?

94-70=24

24÷2=12

35-12=23

小结:看来,画图确实挺形象、直观的,同学们也容易理解。

三、推广应用,形成技能

“鸡兔同笼”问题不仅在中国非常有名,还流传到许多其他的国家。比方说

我们的邻国日本,有一种“龟鹤算”的数学问题,就是从“鸡兔同笼”演变过去的。

出示:有龟和鹤共40只,龟的腿和鹤的腿共有112条。龟、鹤各有几只?

师:请你们用今天这节课学到的方法来解决这道题。

四、全总课总结

今天这节课,我们跨越了1500多年的历史,探讨了中国古代的数学名题。其实,像“鸡兔同笼”这样有趣的数学问题,在中国古代还有很多,有兴趣的同学可以多了解这方面的资料,我想,对你们的学习是很有帮助的。

本节亮点:

1、本节课,杨老师主要介绍的是”表格法“和”画图假设法“,让学生一一列举出来或者画图,化抽象为具体。

2、杨老师在处理”画图假设法“中,借助画图,把每一步列式所求的什么,引导学生说清楚。

小学数学教案鸡兔同笼精选篇2

教学目标

1、通过学生对一些日常生活中的现象的观察与思考,从中发现一些特殊的规律。

2、通过猜测、列表、假设或方程解等方法,解决鸡兔同笼问题。

3、通过本节课的学习,知道与鸡兔同笼有关的数学史,对学生进行数学文化的熏陶和感染。

教学过程

一、故事引入

教师:在我国古代流传着很多有趣的数学问题,鸡兔同笼就是其中之一。这个问题早在1500多年前人们就已经开始探讨了。

出示题目:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?(笼子里有若干只鸡和兔。上面数,有35个头,下面数,有94只脚。鸡和兔各有几只?)

二、探究新知

1、教学例1:笼子里若干只鸡和兔。从上面数有8个头,从下面数有26只脚。鸡和兔各有几只?

让学生以两人为一组讨论。

汇报讨论的结果。

(1)、列表:

鸡876543

兔012345

脚161820222426

(2)、假设法:

假设笼子里都是鸡,那么就是82=16(只)脚,这样就比题目多26-16=10(只)脚。

因为刚才是把兔子当成鸡,一只兔子少算两只脚,那么多出的10只脚就有102=5(只)兔子。

因此,鸡就有:8-5=3(只)

(3)、用方程解:

解:设鸡有x只,那么兔就有(8-x)只。

根据鸡兔共有26只脚来列方程式

2x+(8-x)4=26

2x+84-4x=26

32-26=4x-2x

2x=6

x=3

8-3=5(只)

2、小结解题方法:

教师:以上三种解法,哪一种更方便?

小结:要解决鸡兔同笼问题,可以采用假设法或方程解都可以。用方程解更直接。

3、独立解决书中的趣题。

(1)、方程解:

解:设鸡有x只,那么兔就有(35-x)只。

根据鸡兔共有94只脚来列方程式

2x+(35-x)4=94

2x+354-4x=94

140-94=4x-2x

2x=46

x=23

35-23=12(只)

答:鸡有23只,兔有12只。

(2)、算术解:

假设都是鸡。

235=70(只)

94-70=24(只)

24(4-2)=12(只)

35-12=23(只)

答:鸡有23只,兔有12只。

三、巩固与运用

1、完成教科书第115页做一做的第1题。

学生独立读题分析后,列式解答。鼓励用方程解。

2、完成教科书第115页做一做的第2题。

提问:根据图中你能了解什么信息?(一条大船乘6人,一条小船乘4人)

请同学独立列式解答。(讲评时重点解释算术解的每步的算理)

68=48(人)

假设8条都是大船可坐48人。

48-38=10(人)

假设人数比实际的人数多10人。

多10人的原因是把部分的小船当成了大船,也就是每条小船多算了2人。多的10人除以每条船多算的人数,就是有多少条小船。

10(6-4)=5(条)

8-5=3(条)

这是表示有3条大船。

四、作业

练习二十六第一、二题。

小学数学教案鸡兔同笼精选篇3

教学目标:

1、在“鸡兔同笼”的活动中,经历自主探索、合作交流的过程,体会列表举例、作图分析等解决问题的不同策略。

2、能解决有关“鸡兔同笼”鸡与兔的数量问题及其相类似的数学问题,提高解决实际问题的能力。

3、在探索规律的过程中体会数学与日常生活的联系,获得成功的体验,增强学习数学的兴趣和自信心。

教学重点:

能解决“鸡兔同笼”鸡与兔的数量问题及与其相类似的数学问题。

教学难点:

能用不同的策略解决相关的实际问题。

教学关键:

引导学生学会用假设、举例、列表、作图等方法解决问题。

教具:

多媒体课件

教学过程:

一、联系现实,激趣导入

1、师:同学们,你们喜欢歌谣吗?老师这里有一首歌谣,大家一起读一读。

生:一只鸡一个头,两条腿,一只兔子,一个头,四条腿;

师:接下来的歌谣不完整,谁能把它填完整呢?

两只鸡 个头, 条腿,两只兔子, 个头, 条腿,三只鸡三只兔子一共__个头,__条腿

师:你是怎么知道的?

生:我把兔子的腿数乘兔子的只数然后加上鸡的腿数乘鸡的只数。

[设计意图:从学生们非常感兴趣的话题入手,让学生读歌谣、填歌谣,能深深吸引学生的积极性和探索欲望。]

2、这节课,我们就一起来研究有关“鸡兔同笼”的问题。

二、自主探索,尝试解决

1、猜一猜:出示:鸡兔同笼,有20个头,那么鸡、兔各有多少只?

(1)、指名读题

(2)、理解题意:

师:20个头表示什么?

生:20个头表示鸡与兔的总头数。

师:鸡与兔各有多少只?大家猜猜看?跟同桌说一说。

(3)、同桌说一说:

(4)、学生汇报,教师填表

生1:我猜鸡有3只,兔子有17只。

生2:我猜鸡有5只,兔子有15只。

生3:我猜鸡有16只,兔子有4只。

……

师:请同学们仔细观察一下表格,鸡的只数在变化,兔子的只数也在变化,什么没有变?

生:鸡兔的总只数没有变。

强调鸡兔的总只数不变

[设计意图:通过这样的设计,目的是为了让学生猜测,引出对下边例题的思考,体现思维的灵活性。]

2、自主探究

出示:鸡兔同笼,有20个头,54条腿,那么鸡、兔各有多少只?

(1)、指名读题

(2)、引导观察:

师:这两道题有什么不同呢?

生:第2个问题多了一个条件“54条腿”

(3)、理解题意:

师:20个头,54条腿是什么意思呢?

生:20个头表示鸡与兔的总只数。54条腿表示鸡与兔的总腿数。

师:你想用什么方法来解决鸡兔各有多少只?请小组的同学一起讨论。讨论前老师提个小小的要求:

①、每个小组老师都有一份材料

②、小组长组织小组成员讨论,小组长并做好记录

3、反馈交流,教师适当引导

(1)、逐一列表法:

生1:我先假设鸡1只,兔子19只,算出总腿数78条,接着假设鸡2只,兔子18只,算出总腿数76条……我一直算到鸡13只,兔子7只总腿数54条为止。

师:像这样把每一种情况一一举例,直到寻找到所求的答案的方法,我们把它叫做逐一列表法。(板书:逐一列表法)谁还有不同的方法?

(2)、跳跃列表法

生2:我先假设鸡有1只,兔子有19只,算出总腿数78条,比题目的54条多很多。接着我就假设鸡有5只,兔子有15只,算出总腿数70条,还是多。我就假设鸡有10只,兔子有10只,算出总腿数60条,还是多。我再假设鸡有15只,兔子有5只,算出总腿数50条,比54条少,说明鸡的只数应在10与15之间。我再假设鸡有13只,兔子7只,算出总腿数54条。

师:像这种“5只5只增减”,估计鸡与兔的可能范围,以减少列举的次数,我们把这种方法叫做跳跃列表法。(板书:跳跃列表法)还有其他方法吗?

(3)、折中列表法

生3:我先假设鸡有10只,兔子也是10只,算出总腿数60条,比54条多,我再假设鸡有12只,兔子8只,算出总腿数56条,还是多一点,所以我就假设鸡有13只,兔子有7只,算出总腿数54条。

师:由于鸡与兔的只数共20只,所以各取10只,然后在举例中根据实际数据的情况确定举例的方向,这样可缩小举例的范围,这种方法叫做折中举例法。(板书:折中列表法)

像同学们刚才的这几种解法,我们把它称为列表法。

[设计意图:让学生小组讨论,尝试列表解决问题,调动每个学生的学习积极性,同时对列表的方法不做统一规定,让学生自由发挥,培养了学生的发散思维]

4、画图法(板书:画图法)

师:除了列表法,我们还可以通过画图来解决问题。先画20个圆圈表示20个头,再假设20只都是鸡,在每个圆的下面画2条竖线表示2条腿,总共画出40条腿,还剩下14条腿,刚好可以给7个圆各添上2条腿,所以兔子有7只,鸡有13只。

5、归纳算法

解决“鸡兔同笼”有多种方法,你喜欢哪种方法?

三、巩固练习

生活中有许多类似“鸡兔同笼”的数学问题,你会解答吗?

(1)、出示:停车场上共停放12辆三轮车和自行车,两种车轮子总和为31个,三轮车和自行车各有几辆?

(2)、学生独立解决,全班交流。

[设计意图:通过学生的独立解决,旨在加深学生对鸡兔同笼问题的的理解。此外,不同层次的问题体现了不同学生的发展。也让学生体会到数学就在我们身边。]

四、全课

通过本节课的学习,你学会了什么?(板书:解决问题的不同策略)

五、拓展延伸

书P81“你知道吗?”

师:我国古代数学名著《孙子算经》中就记载了“鸡兔同笼”的有关问题,可见古代劳动人民的智慧,我们为之感到骄傲和自豪。

[设计意图:在教学时,对学生渗透爱国主义教育,激发学生努力学习数学热情,使他们感到学数学不是枯燥乏味的,而是风趣幽默的一门学科。]

教学反思:

反思本次教学活动,我发现了成功与遗憾共存。

成功之处在于:

1、在导入新课时我采用创设情境的方式导入,学生的积极性一下子就被调动起来了。让学生读歌谣、把歌谣补充完整,学生不仅觉得有趣,同时也复习了计算腿数的方法。

2、新授时我让学生自主探索、尝试解决鸡兔同笼的问题,然后引导学生认识三种不同的列表方法:逐一列表法、跳跃式列表法、取中列表法。由于学生的认知水平不同,我没有统一要求,允许不同的学生有不同的解题方法。而且在这个环节中,我给予学生思考的时间也比较充分,因此部分学生对列表法掌握得还蛮可以的。在教学列表法后,我又引导学生用画图的方式去试着解这种类型的问题。

3、练习时,选择与学生生活密切联系的例子,如:停车场上停着自行车和三轮车,让学生自主解决,不仅体会到数学与日常生活的联系,而且获得成功的体验,增强学习数学的兴趣和自信心。

遗憾之处在于:

1、我感觉多媒体课件虽然帮助学生非常直观的理解了“假设法”的这种思维过程,让复杂问题简单化了。但我发现学生的思维过程只是停留在直观、表象这一层面,只有少数同学将这一思考过程内化成成为了自己的一种解决这类知识的模型。

2、练习时,如能引导学生巧妙综合运用三种列表法,把课上得更精彩、生动一点就更好了。

小学数学教案鸡兔同笼精选篇4

教学内容:

教科书数学六年级上册P112-115。

教学目标:

1、了解“鸡兔同笼”问题的结构特点,尝试用不同的策略解决“鸡兔同笼”问题,使学生体会用假设法和代数法的一般性。

2、在解决问题的过程中,培养学生的思维能力,并向学生渗透化繁为简、转化、函数等数学思想和方法。

3、使学生感受古代数学问题的趣味性,体会“鸡兔同笼”问题在生活中的广泛应用,提高学习数学的兴趣。

教学重点:

让学生经历用不同的方法解决“鸡兔同笼”问题的策略,体会其中所蕴涵的数学思想方法。

教学难点:

理解假设法中各步的算理

教具准备:

多媒体课件

教学过程:

一、解读原题,直奔主题。

1、谈话,激情导入

师:同学们,我们的祖国有着几千年的悠久文化,在我国古代更是产生了许多位数学家和许多部数学著作,《孙子算经》就是其中的一部,大约产生于一千五百年前,“鸡兔同笼”问题就是《孙子算经》中的一道古老的数学趣题。

(1)课件出示古趣题:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?

(2)揭示课题

(3)原题解读

师:这是一道古代的数学题,同学们读完题,能不能用现代的教学语言叙述一遍?

课件出示:笼子里有若干只鸡和兔。从上面数,有35个头,从下面数,有94只脚,鸡和兔各有几只?

[设计意图:从我国古代数学趣题直接导入,让学生感受到我国数学文化历史的悠久与美丽,增强民族自豪感,激发学生探究的欲望。]

二、合作探究,寻找策略。

1、改变原题

师:同学们,题目中的数据较大,为了便于研究,我们可先从简单问题入手,老师把题目中的数据变小。

(1)出示例1:笼子里有若干只鸡和兔。从上面数,有8个头,从下面数有26只脚。鸡和兔各有几只?

(2)理解题意:从题中你获得哪些信息?

让学生找出隐藏的两条信息:一只鸡2只脚,一只兔4只脚。

探索策略

2、列表尝试法

①猜一猜:笼子里可能有几只鸡?几只兔?

②说一说:他猜的对吗?要怎么知道他猜的对不对?

③试一试:在答题卡上自主尝试,如果答案不对,想一想怎样调整能更快找到答案,最后数一数一共试了几次。

④展示答题卡:我试了( )次得出答案。鸡有( )只,兔有( )只。

⑤反馈交流

A、按顺序尝试,数一数试了几次?从表中你发现了什么规律?

B、取中或跳跃尝试,数一数试了几次?有什么秘诀?

⑥小结:用列表法解答不一定要一只一只地尝试,也可以2只或3只跳着尝试,这样尝试的次数就更少,就能更快地找到答案。

[设计意图:列表尝试法虽然繁琐,但它是解决问题一种重要的策略和方法。让学生通过列表尝试的方法初步体验在总只数不变的情况下,随着鸡(或兔)只数的调整,脚的总数也发生变化,为下面学习假设法和代数法做好铺垫。]

3、假设法

①、学生独立尝试列式解答

②、小组讨论,说一说用假设法解答的算理

③、汇报反馈

④、课件动态展示假设法的两种思路,老师边演示边提问题让学生回答。

A、假设笼子里都是鸡,一共有几只脚?

条件告诉我们几只脚,这样就少了几只脚呢?

为什么会少了10只脚呢?一只兔看成一只鸡,少了几只脚?

那么几只兔看成鸡一共少了10只脚呢?

B、假设笼子里都是兔,一共有几只脚?与条件比多了几只脚?

为什么会多了6只脚?一只鸡看成一只兔,多了几只脚?

那么几只鸡看成兔一共多了6只脚呢?

⑤、让学生对照课件说一说算式表示的意义

⑥、思考:为什么假设全是鸡,先求出的是兔的只数?为什么假设全是兔,先求出的是鸡的只数?

[设计意图:让学生认识、理解、运用假设法是本课的重点,也是教学的难点。老师以列表尝试法为基础,放手让学生在独立尝试的基础上合作探究,学生从自主尝试到讨论汇报、互动,结合课件的动态演示,巧妙地将学生个人或集体的认知经验、思维过程转化为数学语言,从而形成了解决问题的新策略,发展了学生的`思维水平,获得了新的数学思想方法。]

4、方程解

解:设兔有 只,则鸡有 只。

也可以设:鸡为 只,则兔有 只。(略)

师:在列方程解答时碰到什么困难?该如何解决?

[设计意图:方程解是学生在五年级已经学过的解决问题的一种基本方法,运用它解决“鸡兔同笼”问题便于学生清楚地理解数量关系,不失为解决此类问题的一种好方法,也让学生体验、领悟解决“鸡兔同笼”问题策略的多样化。]

5、梳理小结,比较优化。

三、推广应用,建立模型。

1、选择自己喜欢的方法解决《孙子算经》中的原题。

2、解决生活中的“鸡兔同笼”的问题。

(1)动物园中的问题。

动物园有龟和鹤共40只,龟的腿和鹤的腿共有112条。龟、鹤各有几只?

(2)游乐园中的问题。

有38个同学去游乐园划船,共租了8条船,每条船都坐满了。大船每条各乘6人,小船每条各乘4人。大小船各租了几条?

3、对比联系,建立模型。

4、小结:今天我们研究这类“鸡兔同笼”问题,不仅仅只解决鸡和兔的问题,主要是要用今天学到的方法解决生活中类似的“鸡兔同笼”问题。

5、让学生举出生活中类似的“鸡兔同笼”问题。

[设计意图:放手让学生运用学到的“策略”解决生活中类似的“鸡兔同笼”问题,及巩固了新知,又使学生体会到“鸡兔同笼”问题在生活中的广泛存在,凸显了本节课的学习价值。在此基础上进一步引导学生观察、比较、总结,提炼出此类问题的结构特征和解决的一般性策略,为学生的学习奠定了可持续发展的坚实基础]

四、引导阅读,课外延伸。

1、阅读并思考课本114页的“阅读材料”。

2、完成练习二十六的1—3题。

[设计意图:“抬脚法”也叫“金鸡独立法”是一种特殊而巧妙的解法,学生不容易理解,课后的阅读给学生一个自主探究、交流的空间,又让学生进一步感受到我国古代数学的魅力。练习作业设计的层次性、挑战性,满足了学生个性化学习的需要,为学生的课外发展提供平台。]

小学数学教案鸡兔同笼精选篇5

教学目标:

1、对日常生活中的现象进行观察和思考,引导学生从中发现特殊规律,使学生掌握用列表的方法来解决“鸡兔同笼”的问题。

2、从不同的角度分析问题,掌握解题的策略与方法,从而感受到数学思想的运用和解决实际问题的联系。

3、培养学生分析问题的能力,渗透假设的数学思想,在解题中数形结合,提高学生对数据的再认识,再分析,将列表的过程更优化。

教学重点:

从不同的角度分析,掌握解题的策略与方法。

教学流程:

一、创设情境,明确目标

1、谈话:“同学们,自我介绍一下,我姓周,你们可以称呼我?今天需要我们共同配合,在这里上一节数学课,为了表达谢意,我为你们带来了一些礼物,快来猜一猜,有多少?(5…)太少了?(50…)多了,(40…)少了(45…)差不多了,(46…)恭喜你,答对了,下课就由你发给同学们。

2、喜欢数学吗?数学不但可以开阔我们的视野,增长我们的.知识,还可以锻炼我们的思维。在我国古代就有许多有趣的数学名题,你们了解吗?今天,。老师就向你们推荐一种有趣的问题------鸡兔同笼。

二、自主探索,合作交流

1、出示问题:“鸡兔同笼,有5个头,14条腿,鸡兔各有几只?”

(1)你从中获取什么信息?……

(2)请你们猜一猜将鸡、兔可能是几只?(……)

(3)把你猜的过程给大家说一说

(4)板书学生的过程

鸡 1 2 3

兔 4 3 2

腿 18 16 14

(4)评价:从尝试简单的开始,一个一个的试,最终找到了正确的答案,方法多么简单啊?如果我们再横竖加上几条线,就成了美观的表格。看来,列表来解决这类问题还确实简单,如果现在将鸡兔的数量增加,还能解决吗?(重点引入列表)

2、出示:“鸡兔同笼,有20个头,54条腿,鸡兔各几只?”

(1)自己先想一想如何利用列表来解决?

(2)小组内交流一下自己的想法。

(3)独立完成列表。

(4)汇报想法和过程

小组1:逐一列表------假设鸡有1只,兔子有19只,那么就有78条腿,(腿多了,说明什么?兔子多了,怎么办?)鸡有2只,兔子有18只,那么就有76条腿,一只一只地试,学生把试的结果列成表格。

通过表格引导学生观察:发现了什么?(每多一只鸡,少一只兔子,相应减少2条腿,)

小组2:跳跃式列表——假设鸡有1只,兔子有19只,那么就有78条腿,要比54条腿多的多,因此,兔子的只数也可能多了很多,但是鸡的只数可以不用一只一只依次递增,而是从猜一只到猜5只(或者其它几只),当腿的条数在50到60之间,(提出问题:兔子可能是几只?到底是谁估计的更加接近呢?)

引导发现:这样就减少举例的次数。并通过数据的调整来优化解题策略。

小组3:取中列表——假设鸡兔各有10只

小组4:方程

小组5;奥书班中学习过算术方法(让孩子清楚表达出自己的想法)

三、适时反思,掌握策略(两题任选其一)

“同学们,鸡兔同笼”

1、观察三种列表的方法,比较异同?

2、谈一谈;你们有什么感受?

四、深化练习,拓展延伸

1、课后练习1、2、3(比较不同——答案是否唯一)

2、通过今天的学习,有什么收获?

221381
领取福利

微信扫码领取福利

微信扫码分享