在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,一起看看冀教版八年级数学教案!欢迎查阅!
冀教版八年级数学教案1
一、学习目标:1.使学生了解运用公式法分解因式的意义;
2.使学生掌握用平方差公式分解因式
二、重点难点
重 点: 掌握运用平方差公式分解因式.
难 点: 将单项式化为平方形式,再用平方差公式分解因式;
学习方法:归纳、概括、总结
三、合作学习
创设问题情境,引入新课
在前两学时中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式.
如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本学时我们就来学习另外的一种因式分解的方法——公式法.
1.请看乘法公式
(a+b)(a-b)=a2-b2 (1)
左边是整式乘法,右边是一个多项式,把这个等式反过来就是
a2-b2=(a+b)(a-b) (2)
左边是一个多项式,右边是整式的乘积.大家判断一下,第二个式子从左边到右边是否是因式分解?
利用平方差公式进行的因式分解,第(2)个等式可以看作是因式分解中的平方差公式.
a2-b2=(a+b)(a-b)
2.公式讲解
如x2-16
=(x)2-42
=(x+4)(x-4).
9 m 2-4n2
=(3 m )2-(2n)2
=(3 m +2n)(3 m -2n)
四、精讲精练
例1、把下列各式分解因式:
(1)25-16x2; (2)9a2- b2.
例2、把下列各式分解因式:
(1)9(m+n)2-(m-n)2; (2)2x3-8x.
补充例题:判断下列分解因式是否正确.
(1)(a+b)2-c2=a2+2ab+b2-c2.
(2)a4-1=(a2)2-1=(a2+1)•(a2-1).
五、课堂练习 教科书练习
六、作业 1、教科书习题
2、分解因式:x4-16 x3-4x 4x2-(y-z)2
3、若x2-y2=30,x-y=-5求x+y
冀教版八年级数学教案2
一、学习目标:
1.使学生会用完全平方公式分解因式.
2.使学生学习多步骤,多方法的分解因式
二、重点难点:
重点: 让学生掌握多步骤、多方法分解因式方法
难点: 让学生学会观察多项式特点,恰当安排步骤,恰当地选用不同方法分解因式
三、合作学习
创设问题情境,引入新课
完全平方公式(a±b)2=a2±2ab+b2
讲授新课
1.推导用完全平方公式分解因式的公式以及公式的特点.
将完全平方公式倒写:
a2+2ab+b2=(a+b)2;
a2-2ab+b2=(a-b)2.
凡具备这些特点的三项式,就是一个二项式的完全平方,将它写成平方形式,便实现了因式分解
用语言叙述为:两个数的平方和,加上(或减去)这两数的积的2倍,等于这两个数的和(或差)的平方
形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式.
由分解因式与整式乘法的关系可以看出,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法.
练一练.下列各式是不是完全平方式?
(1)a2-4a+4; (2)x2+4x+4y2;
(3)4a2+2ab+ b2; (4)a2-ab+b2;
四、精讲精练
例1、把下列完全平方式分解因式:
(1)x2+14x+49; (2)(m+n)2-6(m +n)+9.
例2、把下列各式分解因式:
(1)3ax2+6axy+3ay2; (2)-x2-4y2+4xy.
课堂练习: 教科书练习
补充练习:把下列各式分解因式:
(1)(x+y)2+6(x+y)+9; (2)4(2a+b)2-12(2a+b)+9;
五、小结:两个数的平方和,加上(或减去)这两数的积的2倍,等于这两个数的和(或差)的平方
形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式.
六、作业:1、
2、分解因式:
X2-4x+4 2x2-4x+2 (x2+y2)2-8(x2+y2)+16 (x2+y2)2-4x2y2
45ab2-20a -a+a3 a-ab2 a4-1 (a2+1)2-4 (a2+1)+4
冀教版八年级数学教案3
为了更好的引入“反比例函数”的概念,并能突出重点,我采用了课本上的问题情境,同时调整了课本上提供的“思考”的问题的位置,将它放到函数概念引出之后,让学生体会在生活中有很多反比例关系。
情境设置:
汽车从南京开往上海,全程约300km,全程所用的时间t(h)随v(km/h)的变化而变化。
(1)你能用含v的代数式来表示t吗?
(2)时间t是速度v的函数吗?
设计意图:与前面复习内容相呼应,让同学们能在“做一做”和“议一仪”中感受两个量之间的函数关系,同时也能注意到与所学“一次函数”,尤其是“正比例函数”的不同。从而自然地引入“反比例函数”概念。
为帮助学生更深刻的认识和掌握反比例函数概念,我引导学生将反比例函数的一般式进行变形,并安排了相应的例题。
一般式变形:(其中k均不为0)
通过对一般式的变形,让学生从“形”上掌握“反比例函数”的概念,在结合“思考”的几个问题,让学生从“神”神上体验“反比例函数”。
为加深难度,我又补充了几个练习:
1、为何值时,为反比例函数?
2是的反比例函数,是的正比例函数,则与成什么关系?
关于课堂教学:
由于备课充分,我信心十足,课堂上情绪饱满,学生们也受到我的影响,精神饱满,课堂气氛相对活跃。
在复习“函数”这一概念的时候,很多学生显露出难色,显然不是忘记了就是不知到如何表达。我举了两个简单的实例,学生们立即就回忆起函数的本质含义,为学习反比例函数做了很好的铺垫。一路走来,非常轻松。
对反比例函数一般式的变形,是课堂教学中较成功的一笔,就是因为这一探索过程,对于我补充的练习1这类属中等难度的题型,班级中成绩偏下的同学也能很好的掌握。
而对于练习3,对于初学反比例函数的学生来说,有点难度,大部分学生显露出感兴趣的神情,不少学生能很好得解答此类题。
经验感想:
1、课前认真准备,对授课效果的影响是不容忽视的。
2、教师的精神状态直接影响学生的精神状态。
3、数学教学一定要重概念,抓本质。
4、课堂上要注重学生情感,表情,可适当调整教学深度。
冀教版八年级数学教案相关文章:
★ 冀教版小学二年级数学教案模板
★ 冀教版数学四年级上册教案模板
★ 冀教版小学二年级数学上册教案模板
★ 冀教版五年级数学上册教案模板
★ 2020冀教版五年级数学上册教案模板
★ 冀教版五年级数学公开课教案模板
★ 冀教版四年级数学上册教案模板
★ 冀教版四年级下册数学教案模板
★ 冀教版四年级上数学教案模板
★ 冀教版小学三年级数学教学反思
冀教版八年级数学教案
上一篇:西师一年级数学教案
下一篇:八年级数学教案人教版